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Recent enhancement of central Pacific El Niño
variability relative to last eight centuries
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Weijian Zhou1,2, Qiufang Cai1, Jinbao Li7, Steven W. Leavitt8, Changfeng Sun1, Ruochen Mei1,
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The far-reaching impacts of central Pacific El Niño events on global climate differ appreciably

from those associated with eastern Pacific El Niño events. Central Pacific El Niño events may

become more frequent in coming decades as atmospheric greenhouse gas concentrations

rise, but the instrumental record of central Pacific sea-surface temperatures is too short to

detect potential trends. Here we present an annually resolved reconstruction of NIÑO4

sea-surface temperature, located in the central equatorial Pacific, based on oxygen isotopic

time series from Taiwan tree cellulose that span from 1190 AD to 2007 AD. Our recon-

struction indicates that relatively warm Niño4 sea-surface temperature values over the late

twentieth century are accompanied by higher levels of interannual variability than observed in

other intervals of the 818-year-long reconstruction. Our results imply that anthropogenic

greenhouse forcing may be driving an increase in central Pacific El Niño-Southern Oscillation

variability and/or its hydrological impacts, consistent with recent modelling studies.
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S
ea-surface temperature (SST) variations in the tropical
Pacific and associated changes in global atmospheric
circulation dominate global climate variability on inter-

annual timescales. Recent studies distinguish between canonical
El Niño events, with warming located in the central to eastern
tropical Pacific, and central Pacific (CP) El Niño events, wherein
warming is confined to the central tropical Pacific1–3. Both
CP and the East Pacific El Niño-Southern Oscillation (ENSO)
events have widespread impacts on global climate4–7, including
influences on western North American drought8, East Asian
monsoons9 and hurricane properties6. Climate model simulations
suggest that CP ENSO variability may increase under greenhouse
forcing1,10,11, but instrumental records of tropical Pacific SSTs are
too short to provide robust constraints on recent trends in ENSO
variability.

Instrumental and modelling studies use indices of large-scale
SST variability in the central to western tropical Pacific—the
NIÑO3.4 and NIÑO4 indices, respectively—to quantify CP ENSO
variability through time1,2. While there are several high-resolution,
multi-century reconstructions of NIÑO3.4 SST12–15, only two such
reconstructions of NIÑO4 SST exist—one derived from an ice core
in Peru16 and another based on tree-rings in southwest America17.
Additional multi-century reconstructions of CP SSTs are required
to improve quantification of the response of CP ENSO variability
to both natural and anthropogenic climate forcings.

Here we present an 818-year-long, annually resolved record of
tree-ring cellulosic oxygen isotopic (d18O) composition from

Taiwan, a region where CP ENSO-related changes in atmospheric
circulation and hydroclimate are large9,18,19. Tree-ring cellulosic
d18O is a well-established proxy sensitive to large-scale
hydrological conditions20. Our results show that the warm
phases of our reconstruction correspond to strong El Niño
years. The annual variation and variance of NIÑO4 SST are
relatively high during the late twentieth century likely due to
anthropogenic global warming.

Results
Taiwan tree-ring d18O chronology. In total, 50 Chamaecyparis
formosensis Matsum tree-ring cores from 29 individual trees
were collected from Mt. Daxue, Taiwan (B24� N, 121� E) at an
elevation of 2,000–2,200 m above sea level (Fig. 1a). After
cross-dating the ring-width time series across every core
(Supplementary Table 1), 16 cores were selected for cellulose
d18O analysis following standard protocols (Methods).

To avoid potential d18O artefacts associated with juvenile
isotope effects21, we excluded the first 20 years (rings)21–25 from
those cores with no visible rot in the pith, following standard
procedures. The resulting 16 annually resolved time series contain
overlapping segments of 67–408 years in length (Fig. 2a–d,f), and
have significant common variability where they do overlap
(r¼ 0.51–0.89, Po0.001; Supplementary Table 2). In generating a
composite tree-ring d18O record from this ensemble, we
arithmetically averaged the 16 individual d18O time series into
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Figure 1 | Map and time series showing the relationship of Taiwan tree-ring d18O with regional sea-surface temperature (SST). (a) Map of the

composite Taiwan tree-ring d18O record regressed upon global SSTs52 (https://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html) from 1900 to

2007 AD. Colours define areas of statistically significant correlations (Po0.05). The black rectangle denotes the NIÑO4 region. The shaded numbers

denote the locations of proxy records mentioned in the text: 1—Taiwan tree-ring 18O; 2—Fujian, China tree-ring d18O (ref. 27, 25� 590 N, 106� 260 E,

1901–2004 AD); 3—Mu Cang Chai, Laos tree-ring d18O (ref. 28, 21� 400 N, 104� 060 E, 1705–2005 AD); 4—PhuLeuy Mountain, Vietnam tree-ring d18O

(ref. 29, 20� 170 N, 103� 550 E, 1688–2002 AD); 5—Maiana coral d18O (ref. 33, 1� N, 173� E, 1840–1995 AD); 6—Palmyra coral d18O (ref. 12, 6� N, 162� W,

1635–1703 AD, 1886–1998 AD). (b) Comparison of the annually resolved SST anomaly (SSTA) between Taiwan tree-ring d18O-based NIÑO4 index (red)

and the Kaplan instrumental NIÑO4 index21 averaged from March to May (blue) of each year (Po0.05). Note that the significance of all correlations

reported in this study have been assessed using effective degrees of freedom that account for autocorrelation in the time series27. Map of a was created by

http://climexp.knmi.nl/corfield.cgi.
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a single d18O time series spanning 1190–2007 AD (Fig. 2e). Aside
from the high degree of between-sample reproducibility of
cellulosic d18O, a variety of standard statistical metrics confirms
that the composite Taiwan tree-ring d18O time series is robust
(Fig. 2f; Methods).

Climate signals of Taiwan tree-ring composite d18O record.
The Taiwan tree-ring composite d18O record is a sensitive
indicator of regional hydroclimate, as indicated by significant
correlations with regional precipitation d18O time series
(Methods; Fig. 3). At the local scale, the record is significantly
correlated to temperature, precipitation and relative humidity
(RH), such that higher tree d18O values reflect warm, dry
conditions (Supplementary Fig. 1a). Indeed, the Taiwan tree
d18O record is significantly correlated to the mean value of
May–September Palmer Drought Severity Index26 (at the grid
point 24.75� N, 121.75� E, r¼ � 0.45, Po0.0001), consistent with
previous studies of tree d18O time series from southeast Asia27–29.
Correlation analysis also showed significant relationship between
Taiwan Palmer Drought Severity Index and regional precipitation
(Supplementary Fig. 2).

Relationship between NIÑO4 SST and tree-ring d18O. The new
Taiwan tree d18O record is significantly correlated with NIÑO4
SST, located in the heart of the CP ENSO region (Fig. 1;
Supplementary Fig. 3). Correlations are highest after 1950, when
the quality of tropical Pacific SST data is highest30

(Supplementary Fig. 4a). We also computed correlations
between our Taiwan tree-ring d18O series and other proxy-
based reconstructions of NIÑO3.4 and NIÑO4 SST, and find that
proxy–proxy correlations are higher in the early 20th century
than the corresponding proxy-SST correlations (Supplementary
Table 3). Our analyses suggest that the quality of instrumental
data during the early 20th century may be somewhat
reduced relative to the late twentieth century. Given that
Taiwan d18O-NIÑO4 SST correlations are highest during
March–May (Supplementary Fig. 1b; Supplementary Table 4),
we used the tree d18O record to reconstruct the March–May
NIÑO4 SST from 1190 to 2007 AD (Fig. 4a). Calibration
and verification metrics (Methods; Supplementary Fig. 4b;
Supplementary Table 5) confirm that our Taiwan tree
d18O-based reconstruction of NIÑO4 SST is robust throughout
its length.
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Figure 2 | Taiwan tree-ring d18O records and associated reconstruction metrics. (a–d) Replicate annually resolved d18O time series from 16 individual

trees from Mt. Daxue, Taiwan (thin coloured lines) plotted with the Kaplan NIÑO4 sea-surface temperature index averaged from March to May of

each year (thick black line, 1856–2015 AD). (e) Normalized composite tree-ring d18O record (black line), plotted with an 8-year low-pass filter (red line).

(f) The expressed population signal (EPS33,34) and Rbar33,34 (the average correlation between the d18O series for each year over the sequential time

periods) statistics of the d18O reconstruction (Methods), and number of cores available through the reconstruction interval. All tree-ring d18O series in

a–e were normalized (Z-score). SSTA, SST anomaly.
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The positive correlation between Taiwan tree d18O and the
boreal spring NIÑO3.4 index reflects drier conditions across the
western Pacific region during El Niño events. Time series of
rainfall d18O from the Global Network of Isotopes in Precipita-
tion database confirm that during CP El Niño events, the d18O
of rainfall increases across the western Pacific as the locus of
large-scale convection shifts away from the maritime continent to
the CP (Methods; Fig. 3). These results suggest that the Taiwan
tree d18O record tracks local changes in rainfall d18O, in line with
findings from forward modelling studies of tree cellulose d18O
variability20. Previous studies have documented that local rainfall
d18O is more sensitive to ENSO variability than local rainfall
amount in the western tropical Pacific27–29,31, given the
appreciable spatial and temporal averaging inherent in the
rainfall d18O variations. Further support for the CP El Niño-
Taiwan hydrological link comes from positive 850 hPa
geopotential height anomalies in March–May in South Asia and
the western Pacific during CP El Niño events32 (Fig. 5). The
associated large-scale anticyclonic flow during CP El Niño
extremes causes subsidence and the weakening of the prevailing
southwest winds over Taiwan, both of which contribute to
precipitation decreases throughout the region of interest.
Collectively, these analyses provide a dynamical context for the
observed correlations between the Taiwan tree d18O record and
the NIÑO4 SST index—the target of our reconstruction.

Characteristics of the reconstructed NIÑO4 SST. The Taiwan
tree d18O-based SST reconstruction contains a rich spectrum
of variability spanning interannual to centennial timescales
(Fig. 4; Supplementary Figs 5 and 6), similar to other multi-
century reconstructions of tropical Pacific SSTs14. Several
individual years stand out as exceptionally warm, allowing for
the potential identification of strong El Niño years over the last
millennium. On multi-decadal to century timescales,
reconstructed SST values during the late 20th century are
significantly higher than during any previous interval (Fig. 4d;
Supplementary Table 6), consistent with anthropogenic warming
of the NIÑO4 region. Indeed, anomalous late twentieth century
warming in the central tropical Pacific is also inferred from coral

d18O time series from Maiana33 and Palmyra12 (Supplementary
Fig. 7), as well as from a tree-ring-based reconstruction of
NIÑO3.4 (ref. 14; Supplementary Fig. 8), all of which exhibit
significant correlations with the Taiwan tree d18O record over
their periods of overlap (Supplementary Table 7).

Prominent interannual variability dominates the Taiwan tree
d18O record (Supplementary Figs 5 and 6), with a spectral
signature similar to that observed in instrumental time series of
the ENSO phenomenon. Before the twentieth century, the largest
interannual excursions occur during the early to mid-seventeenth
century, in line with previous observations of enhanced ENSO
activity during this time12, possibly related to enhanced volcanic
activity34. Indeed, the highest single tree-ring d18O value of the
entire reconstruction corresponds to 1651 AD, and may be linked
to an exceptionally large El Niño event documented in historical
records from the Paraná River region in South America35 as well
as in coral d18O records from the central tropical Pacific12,33

(Fig. 4a; Supplementary Fig. 7a,b). Interannual SST variance
reaches a relative maximum during the late twentieth century
(Fig. 4d), although appreciable spread in the individual tree-ring
series precludes a finding of significance at the 95% confidence
level. Taken at face value, our results provide empirical support
for model projections of increased CP ENSO activity under
continued anthropogenic climate change2,10. As such, the fact
that the record-breaking 2015/2016 El Niño event was
characterized by maximum warming in the CP, as opposed to
the eastern Pacific, is consistent with a growing body of
observational and modelling evidence for a prevalence of CP
ENSO under greenhouse forcing.

Discussion
Taken together, our results suggest that anthropogenic climate
change has had a profound effect on SSTs in the CP, whereby
anomalous warming over the last decades is accompanied by an
increase in interannual variance. NIÑO4 SST values over the last
two decades are likely higher than natural variations over the last
818 years, owing to a combination of relatively high CP ENSO
activity and a late 20th century warming trend. In light of our
results, it seems plausible that the dominance of CP ENSO
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Figure 3 | Comparison between the Taiwan tree-ring d18O (red) and the precipitation d18O (blue) in the adjacent western Pacific obtained from the

Global Network of Isotopes in Precipitation. (a) r¼0.42 with Bangkok precipitation d18O (n¼40, Po0.0001). (b) r¼0.57 with Hong Kong (n¼ 35,

Po0.0001). These plots suggest that the Taiwan tree-ring d18O reflects large-scale regional hydrological signals. (c) NIÑO4 sea-surface temperature
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SSTA, SST anomaly.
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extremes in the first two decades of the twenty-first century may
continue, albeit with some important caveats. First, the global
climate impacts of future CP ENSO extremes will critically
depend on the evolution of the mean climate state in the tropical
Pacific36,37, which itself is poorly constrained at present. Second,
the new Taiwan tree d18O record is the newest addition to
growing archive of high-resolution paleo-data sets that can be
used to probe the sensitivity of tropical Pacific climate to a variety
of external climatic forcings over the recent past. One such
example comes from the early- to mid-Holocene, when some
models and data suggest that processional insolation forcing may
have driven a shift towards greater CP ENSO activity and less
East Pacific ENSO activity37. Should the dominance of CP ENSO
extremes continue in the coming decades, investigations of the
causes, and consequences, of any past shifts towards CP ENSO
may provide some clues about future tropical Pacific climate
trends and their global impacts.

Methods
Sample selection and cellulose extraction. Fifty tree-ring cores from 29
Chamaecyparis formosensis Matsum trees were collected from Taiwan in 2008.
According to the standard dendrochronologial techniques, samples were
polished and cross-dated. The quality of cross-dating was validated by program
COFECHA38. Each individual tree-ring was identified as a calendar year. After
accurate cross-dating, we selected 16 cores from each of 16 individual trees to carry
out stable oxygen isotope analysis on the principle of ensuring at least 4 cores were
present over the whole record.

The tree-ring cellulose was extracted as follows: materials of whole annual ring
were separated and sliced into thin sections by a razor under microscope; the thin
sections cut with a razor knife allow the chemical processing to proceed completely
and rapidly; the sliced samples were chemically treated by acetone, a mixture of
toluene and ethanol, acidified sodium hydrochlorite and 17.5% solution of sodium
hydroxide in successive steps39,40; the cellulose of annual rings was transferred to a
small bottle and homogenized with an ultrasonic cell crusher (JY92-2D, Ningbo
Scientz Biotechnology Co., Ningbo, China); and the cellulose samples were dried
overnight.

Stable isotopic analysis. We loaded each 130–170 mg homogenized cellulose
sample into a silver capsule. Each silver capsule with an annual sample was sealed
and packed. The samples were converted to CO at 1,350 �C using pyrolysis-type
elemental analyser (TC/EA, Thermo Fisher, Germany) interfaced to an isotope
ratio mass spectrometer (Delta V Advantage, Thermo Fisher, Germany). The
18O/16O ratio was expressed in delta (d18O) notation with reference to a standard
material for which the isotopic ratio is known (equation (1)). The d18O was
determined from the following equation:

d18O ¼ Rsample

Rstandard
� 1

� �
�1;000 ð1Þ

where Rsample and Rstandard are the 18O/16O ratios for the sample and standard
cellulose, respectively. Values of d18O were reported with respect to the Vienna
Standard Mean Ocean Water. The analytical reproducibility by analysing Merck
cellulose (Merck KGaA, Darmstadt, Germany) was ±0.2%.

Tree-ring d18O chronology development. We used a Numerical Mix Method41 to
establish an accurate and reliable Taiwan tree-ring d18O chronology. The idea
behind Numerical Mix Method is that several individual d18O series are measured
first, and then the mean values are calculated using an arithmetic average to
produce a single isotope chronology. This method treats the stable isotope series
such as a tree-ring index, akin to ring width. It follows the standard procedure of
tree-ring width chronology development by measuring individual tree-rings and
creating a mean site value42–44.

The individual d18O series were combined into a single chronology by
computing arithmetical mean. There is no reason to suspect that the Taiwan
tree-ring d18O series should not preserve low-frequency climate signals. EPS, the
expressed population signal45,46, is used to evaluate the agreement between the
d18O series (or the common variance relative to the total variance). Generally, that
an EPS value is 40.85 is considered to be an acceptable threshold for a reliable
chronology45,46. The Rbar45 parameter indicates the average correlation between
the d18O series for each year over the sequential time periods. In this study,
EPS and Rbar were calculated for Taiwan tree d18O chronology by using a 50-year
window that lags by 25 years.

Tree-ring d18O responses to local climate parameters. The Yilan meteor-
ological station (1936–2007 AD, 24� 460 N, 121� 450 E; 8 m above sea level) is the
closest meteorological station to the sampling site with sufficiently complete
records for climate response analysis. Thus, the observed precipitation, temperature
and RH records from Yilan were used to identify the tree-ring d18O climatic
response. Considering the possibility that the climate of the current year not only
affects tree growth in the current year but also in subsequent years47, we
incorporated meteorological data from November of the prior year to October of
the current year into our model. The monthly mean temperature, mean
precipitation and mean RH of Yilan station are shown in Supplementary Fig. 9.

Tree-ring d18O responses to precipitation d18O time series. Generally, the
amount of precipitation shows a negative correlation with d18O of precipitation at
lower latitudes, which is referred as the ‘Amount Effect’48. Decreasing amount of
precipitation in the western Pacific region during El Niño enriches the ratio of
18O/16O in precipitation. Tree physiology has demonstrated that d18O of tree-rings
was positively correlated with d18O of precipitation and negatively correlated with
RH18. However, there was no strong correlation between the local RH and the tree-
ring d18O (r¼ � 0.21, n¼ 72, P40.01) at Taiwan sampling site, which implies that
the d18O of precipitation was the most important factor for determining the tree-
ring d18O value.

On the other hand, the Taiwan tree-ring d18O series was significantly correlated
with the precipitation d18O records from the adjacent western Pacific region
obtained from Global Network of Isotopes in Precipitation: r was 0.42 with
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Figure 4 | Composite Taiwan tree-ring d18O-based reconstruction of

NIÑO4 sea-surface temperature (SST) anomaly from 1190 to 2007 AD.

(a) Plot of composite tree d18O-based NIÑO4 SST anomalies (SSTAs)

averaged over March–May for each year, calculated with respect to the

mean of observed SSTs during the 1950–2007 AD period (black horizontal

line), plotted with 31-year low-passed version of the data (red line), and the

blue horizontal line indicates the highest 31-year low-passed SST value of

the time series. The grey area denotes ±2s error bars, based on the

statistical reconstruction across overlapping tree d18O series53. An

anomalously high reconstructed SST value in 1651 AD is indicated by an

orange arrow. (b) Thirty-one-year low-passed value of the composite

Taiwan tree d18O series shown in a. The grey area denotes ±2s smoothed

error bars54. The blue horizontal line indicates the highest 31-year low-

passed SST value of the time series41 (Methods). (c) Time series of 31-year

running variance of internnual-scale variability (isolated with a 2–7-year

band-pass filter) corresponding to each of the 16 individual raw tree-ring

d18O time series (thin coloured lines) and the average of these running

variance time series (thick red line, for periods where they overlap). (d) The

red line is the same red line in c and the pink area denotes ±1s of the

mean. The horizontal blue lines both in c,d indicate the highest 31-year

averaged interannual variance value of the time series, centred on 1992 AD.
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Bangkok precipitation d18O (n¼ 40, Po0.0001), 0.68 with Kunming (n¼ 16,
Po0.001) and 0.57 with Hong Kong (n¼ 35, Po0.0001; Fig. 3). Therefore,
enriched 18O/16O of precipitation resulted in high d18O value of tree-rings in
Taiwan (including the western Pacific) during El Niño events and vice versa.
It suggests that the Taiwan tree-ring d18O contained large-scale precipitation
d18O signals in the northwestern Pacific sector.

Split calibration-verification method. Analysis revealed that the Taiwan tree-ring
d18O is highly correlated with NIÑO4 SST from March to May during 1950–2007
(SSTMAM, Supplementary Fig. 1b). A transfer function was then designed to
reconstruct the central Pacific NIÑO4 SST using Taiwan tree-ring d18O:

SSTMAM ¼ 0:431�d18O� 0:286 ð2Þ

(n¼ 58, r¼ 0.734, R2¼ 0.539, R2
adj¼ 0.531, F¼ 65.546, Po0.0001, D/W¼ 1.82).

As shown in Fig. 1b, the reconstructed SST matched the observed Kaplan
NIÑO4 SST pretty well. The r was 0.64 after first difference (1951–2007,
Po0.0001, Supplementary Fig. 4b), indicating their significant and stable
relationships in high frequency.

The stability and reliability of the regression equation were evaluated using the
split calibration-verification method45,49. It was performed by calibrating the
NIÑO4 SST data from a subperiod (the data set was divided into two parts,
1950–1979 and 1978–2007) and verifying the reconstruction using the remaining
data. The results were evaluated by the correlation coefficient (r), the sign test (ST),
the reduction of error test (RE), the coefficient of efficiency (CE) and the product
means test (t) during the verification period. Generally, RE and CE values greater
than zero indicate a rigorous model skill49. Larger values of the RE and CE indicate
better results. Moreover, the values of CE are more rigorous and are typically lower
than those of RE (Supplementary Table 5).

As shown in Figs 1b and 2a and Supplementary Fig. 4b, the reconstructed SST
matched the observed Kaplan NIÑO4 SST pretty well.

The effective number of degree of freedom estimation. Since there are auto-
correlations in the data used in this study and their corresponding number of
degree of freedom is reduced, the effective number of degree of freedom (EDOF) is
estimated to test the significance level of correlations for each pair of time series. In
this paper, we used the method described by Bretherton et al.50 for estimating
EDOF. The EDOF is estimated by:

EDOF ¼ N� 1� r1�r2

1þ r1�r2
; ð3Þ

where N denotes the length of the time series, and r1 and r2 refer to the lag-one
autocorrelation of each series, respectively.

Smoothing method. The data at the ends of the time series before smoothing were
padded by using the mean value of the remaining data. When there were 30
remaining data, their mean value was used as the 31th data. So that there were
enough 31 data used to calculate the 31-year low-pass filter value. And, this process
was repeated until the last year51.

Data availability. Data that have contributed to the reported results are available
from the corresponding author on request.
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